print small

Participating Countries:

Australia

Austria

Belgium

Bulgaria

Canada

Cyprus

Czech Republic

Denmark

European Commission

France

Germany

Greece

Hungary

Ireland

Israel

Italy

Norway

Poland

Portugal

Romania

Russian Federation

Serbia

Slovakia

Slovenia

Spain

Sweden

Switzerland

Turkey

Ukraine

United Kingdom

United States of America

COST is supported by the EU Framework Programme Horizon 2020
This website is supported by COST
12/9/2014 (Added to site)
Author(s): Eneko Garaio, Olivier Sandre, Juan-Mari Collantes, Jose Angel Garcia, Stéphane Mornet, Fernando Plazaola

Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry)

Journal: Nanotechnology
DOI: 10.1088/0957-4484/26/1/015704
Request reprint

Magnetic nanoparticles (NPs) are intensively studied for their potential use for magnetic hyperthermia, a treatment that has passed a phase II clinical trial against severe brain cancer (glioblastoma) at the end of 2011. Their heating power, characterized by the 'specific absorption rate (SAR)', is often considered temperature independent in the literature, mainly because of the difficulties that arise from the measurement methodology. Using a dynamic magnetometer presented in a recent paper, we measure here the thermal dependence of SAR for superparamagnetic iron oxide (maghemite) NPs of four different size-ranges corresponding to mean diameters around 12 nm, 14 nm, 15 nm and 16 nm. The article reports a parametrical study extending from 10 to 60 °C in temperature, from 75 to 1031 kHz in frequency, and from 2 to 24 kA m−1 in magnetic field strength. It was observed that SAR values of smaller NPs decrease with temperature whereas for the larger sample (16 nm) SAR values increase with temperature. The measured variation of SAR with temperature is frequency dependent. This behaviour is fully explained within the scope of linear response theory based on Néel and Brown relaxation processes, using independent magnetic measurements of the specific magnetization and the magnetic anisotropy constant. A good quantitative agreement between experimental values and theoretical values is confirmed in a tri-dimensional space that uses as coordinates the field strength, the frequency and the temperature.


Keywords: AC field    Brown    iron oxide    maghemite    magnetic hyperthermia    magnetometry    Néel    relaxation    SAR   

Founding Members

Project Office

STSM



Subscribe to newsletter