print small

Participating Countries:

Australia

Austria

Belgium

Canada

Cyprus

Czech Republic

Denmark

European Commission

France

Germany

Greece

Hungary

Ireland

Israel

Italy

Norway

Poland

Portugal

Romania

Russian Federation

Serbia

Slovakia

Slovenia

Spain

Sweden

Switzerland

Turkey

Ukraine

United Kingdom

United States of America

COST is supported by the EU Framework Programme Horizon 2020
This website is supported by COST
12/7/2017 (Added to site)
Author(s): Moskvin M, Babič M, Reis S, Cruz MM, Ferreira LP, Carvalho MD, Lima SAC, Horák D.

Biological evaluation of surface-modified magnetic nanoparticles as a platform for colon cancer cell theranostics.

Journal: Colloids Surf B Biointerfaces
DOI: 10.1016/j.colsurfb.2017.10.034
Request reprint

 Magnetic nanoparticles offer multiple possibilities for biomedical applications. Besides their physico-chemical properties, nanoparticle-cellular interactions are determinant for biological safety. In this work, magnetic nanoparticles were synthesized by one-shot precipitation or two-step reaction and coated with biocompatible polymers, such as poly(l-lysine) and poly(N,N-dimethylacrylamide-co-acrylic acid), and carbohydrates, like l-ascorbic acid, d-galactose, d-mannose, and sucrose. The resulting magnetic nanoparticles were characterized by dynamic light scattering, FT-Raman spectroscopy, transmission electron microscopy, SQUID magnetometry, and Mössbauer spectroscopy. Ability of the nanoparticles to be used in theranostic applications was also evaluated, showing that coating with biocompatible polymers increased the heating efficiency. Nanoparticles synthesized by one-shot precipitation were 50% larger (∼13nm) than those obtained by a two-step reaction (∼8nm). Magnetic nanoparticles at concentrations up to 500μgmL-1 were non-cytotoxic to L929 fibroblasts. Particles synthesized by one-shot precipitation had little effect on viability, cell cycle and apoptosis of the three human colon cancer cell lines used: Caco-2, HT-29, and SW-480. At the same concentration (500μgmL-1), magnetic particles prepared by a two-step reaction reduced colon cancer cell viability by 20%, affecting cell cycle and inducing cell apoptosis. Uptake of surface-coated magnetic nanoparticles by colon cancer cells was dependent on particle synthesis, surface coating and incubation time.



Founding Members

Project Office

STSM



Subscribe to newsletter